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ABSTRACT
Multimodal intent recognition is a significant task for understand-
ing human language in real-world multimodal scenes. Most existing
intent recognition methods have limitations in leveraging the multi-
modal information due to the restrictions of the benchmark datasets
with only text information. This paper introduces a novel dataset
for multimodal intent recognition (MIntRec) to address this issue.
It formulates coarse-grained and fine-grained intent taxonomies
based on the data collected from the TV series Superstore. The
dataset consists of 2,224 high-quality samples with text, video, and
audio modalities and has multimodal annotations among twenty in-
tent categories. Furthermore, we provide annotated bounding boxes
of speakers in each video segment and achieve an automatic process
for speaker annotation. MIntRec is helpful for researchers to mine
relationships between different modalities to enhance the capabil-
ity of intent recognition. We extract features from each modality
and model cross-modal interactions by adapting three powerful
multimodal fusion methods to build baselines. Extensive experi-
ments show that employing the non-verbal modalities achieves
substantial improvements compared with the text-only modality,
demonstrating the effectiveness of using multimodal information
for intent recognition. The gap between the best-performing meth-
ods and humans indicates the challenge and importance of this task
for the community. The full dataset and codes are available for use
at https://github.com/thuiar/MIntRec.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval; • Computing methodologies → Object detection.
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Aww, man, then I won't get to hear Jonah lecture us.
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Figure 1: An example of multimodal intent recognition.
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1 INTRODUCTION
Intent recognition is crucial in natural language understanding
(NLU), which aims to leverage the text information to determine the
intent categories for better conversational interactions. Though text-
based intent recognition has achieved remarkable performance [11,
35, 61], it mainly focuses on goal-oriented tasks in specific domains.
The intents of these tasks usually come from orders or queries with
clear semantic features [8, 13], which are different from the real-
world multimodal language with rich emotional, attitudinal and be-
havioral information. Combining natural language with non-verbal
signals (e.g., expressions, body movements, and tone of speech)

ar
X

iv
:2

20
9.

04
35

5v
1 

 [
cs

.A
I]

  9
 S

ep
 2

02
2

https://github.com/thuiar/MIntRec
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3503161.3547906
https://doi.org/10.1145/3503161.3547906


MM ’22, October 10–14, 2022, Lisboa, Portugal Hanlei Zhang et al.

Automatic Speaker Annotation

Complain, Praise, Apologise, Thank, Criticize
Care, Agree, Taunt, Flaunt, Oppose, Joke

Inform, Advise, Arrange, Introduce, Comfort
Leave, Prevent, Greet, Ask for help

Express emotions and attitudes

Achieve goals

Coarse-grained Taxonomies Fine-grained Taxonomies

Intent Taxonomy Definition

Multimodal Intent Annotation

Active Speaker Detection

Face Tracking

… +

… +

Scene Detection

Data Preparation

...
...

Raw Videos

Text AudioVideo

Annotation example Voting Result : Arrange

Object Detection & Face Detection

... ...

...

Figure 2: The process of building the MIntRec dataset.

may be beneficial in analyzing human intentions from multiple
perspectives and provide more friendly services.

Taking Figure 1 as an example, we might infer the speaker to be
complaining about someone based on the text information. After
combining the video and audio information, we find the real inten-
tion is joking, as the speaker’s expression and tone are cheerful
rather than indignant. It indicates that using text alone has diffi-
culties satisfying the requirements of identifying complex human
intents in practical situations. It is essential to use complementary
knowledge of different modalities to improve the performance of
intent comprehension.

Multimodal language understanding has attracted much atten-
tion in recent years. A series of multimodal datasets have been
proposed in many areas such as sentiment analysis [54, 57, 58],
humor detection [17], sarcasm detection [9], semantic comprehen-
sion [49, 53], etc. These benchmark datasets have extensively pro-
moted the research and application of multimodal methodologies in
related fields. However, there is still a lack of multimodal datasets
for intent analysis. Most of the existing intent benchmark datasets
contain merely the text modality [8, 13, 26, 30] or the visual modal-
ity [23]. MDID [25] used image-caption pairs from Instagram posts
to analyze multimodal intents, but the caption-based text informa-
tion is different from spoken languages in the real world.

The scarcity of data has seriously restricted the development of
multimodal intent recognition. Nevertheless, constructing such a
multimodal intent benchmark dataset faces two main challenges.
Firstly, we need to design appropriate multimodal intent categories.
Current intent taxonomies are mainly based on the text information
or image-caption pairs, which have limitations when applied in
multimodal scenes. Secondly, it requires distinguishing the visual
information of the speaker as there is usually more than one person
in the same situation. However, it will take much cost to perform
manual annotation.

Table 1: Statistics of the MIntRec dataset.

Total number of coarse-grained intents 2
Total number of fine-grained intents 20
Total number of videos 43
Total number of video segments 2,224
Total number of words in text utterances 15,658
Total number of unique words in text utterances 2,562
Average length of text utterances 7.04
Maximum length of text utterances 26
Average length of video segments (s) 2.38
Maximum length of video segments (s) 9.59

To solve these problems, we propose a novel dataset, MIntRec,
to fill the gap in multimodal intent recognition. The process of
building the dataset is shown in Figure 2. Firstly, we prepare the
original multimodal data for the dataset. The TV series SuperStore
is selected as the data source due to its superiority for this task.
After collecting the raw videos and subtitles, we process them into
text utterances with respective video and audio segments. Then,
we design both coarse-grained and fine-grained intent taxonomies
for the multimodal scene. The coarse-grained taxonomies contain
"Express emotions or attitudes" and "Achieve goals", which are
inspired by the human intention philosophy [4]. Eleven and nine
fine-grained intents are respectively summarized for these two
coarse-grained categories based on the video segments and high-
frequency intent tags.

Next, we perform multimodal intent annotation with the pre-
pared data and intent taxonomies. Five well-trained workers are
employed for the annotation task. They label each sample among
twenty intent tags with a convenient annotation platform, and the
majority voting determines the multimodal labels. Finally, we ob-
tain 2,224 high-quality samples for MIntRec. Besides, we propose
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Table 2: Intent taxonomies of our MIntRec dataset with brief interpretations.

Intent Categories Interpretations

Express
emotions

or
attitudes

Complain Express dissatisfaction with someone or something (e.g., saying unfair encounters with a sad expression and helpless motion).
Praise Express admiration for someone or something (e.g., saying with an appreciative expression).
Apologise Express regret for doing something wrong (e.g., saying words of apology such as sorry).

Thank Express gratitude in word or deed for the convenience or kindness given or offered by others (e.g., saying words
of appreciation such as thank you).

Criticize Point out someone’s mistakes harshly (e.g., yelling out someone’s problems).
Care Concern about someone or be curious about something (e.g., worrying about someone’s health).
Agree Have the same attitude about something (e.g., saying affirmative words such as yeah and yes).
Taunt Use metaphors and exaggerations to accuse and ridicule (e.g., complimenting someone with a negative expression).
Flaunt Boast about oneself to gain admiration, envy, or praise (e.g., saying something complimentary about oneself arrogantly).
Oppose Have an inconsistent attitude about something (e.g., saying negative words to express disagreement).
Joke Say something to provoke laughter (e.g., saying something funny and exaggerated with a cheerful expression).

Achieve
goals

Inform Tell someone to make them aware of something (e.g., broadcasting something with a microphone).
Advise Offer suggestions for consideration (e.g., saying words that make suggestions).
Arrange Plan or organize something (e.g., requesting someone what they should do formally).

Introduce Communicate to make someone acquaintance with another or recommend something (e.g., describing a person’s identity
or the properties of an object).

Comfort Alleviate pain with encouragement or compassion (e.g., describing something is hopeful).
Leave Get away from somewhere (e.g., saying where to go while turning around or getting up).
Prevent Make someone unable to do something (e.g., stopping someone from doing something with a hand).
Greet Express mutual kindness or recognition during the encounter (e.g., waving to someone and saying hello).
Ask for help Request someone to help (e.g., asking someone to deal with the trouble).

an automatic process for speaker annotation. The detected object
boundings are used to get the visual information of persons in each
video frame. To identify the bounding boxes of speakers, we first de-
tect and track faces within bounding boxes in different visual scenes
and then predict the indexes of speakers with the active speaker
detection algorithm. This process achieves high performance on
our constructed testing set.

After extracting features for each modality, we build baselines
with three strong multimodal fusion methods. The experimental
results show that leveraging the nonverbal information achieves
1% ∼ 2% stable improvements on both binary and multi-class clas-
sification. However, the results of the best methods are still far from
human performance, indicating the challenge of the multimodal
intent recognition task.

Our contributions are summarized as follows:
(1) In this work, we build a novel multimodal intent recogni-

tion dataset, MIntRec, containing 2,224 high-quality samples with
multimodal intent annotations. To the best of our knowledge, it
is the first benchmark dataset for intent recognition in real-world
multimodal scenes.

(2) New intent taxonomies are designed for this task. Concretely,
we provide two coarse-grained and twenty fine-grained intent cat-
egories for the study of multimodal intent analysis.

(3) An automatic speaker annotation process is proposed to
produce high-quality annotated bounding boxes for speakers under

the evaluation of over 12K human-annotated keyframes. It saves
much time and laboratory and may benefit similar annotation tasks.

(4) Extensive experiments conducted on our dataset show utiliz-
ing multimodal information is superior to text-based intent recog-
nition. The best-performing methods still have much room for
improvement compared with humans.

2 MINTREC DATASET
In this section, wewill introduce the process of building theMIntRec
dataset, including data preparation, intent taxonomy definition,
multimodal intent annotation, and automatic speaker annotation.
The detailed statistics of MIntRec are shown in Table 1.

2.1 Data Preparation
Multimodal intent recognition requires plenty of nonverbal signals
in real-world conversational scenes. For this purpose, we select
the TV series Superstore as the source of our dataset, which has
two main advantages: On the one hand, it consists of a wealth
of characters (including seven prominent and twenty recurring
roles) with different identities in the superstore, which is helpful to
produce rich body language, expressions, and tones as multimodal
information. On the other hand, it contains a mass of stories in
various scenes (e.g., shopping mall, warehouse, office), which favor
collecting diverse intent categories.
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The raw videos and subtitles of Superstore are accessible on
YouTube and OpenSubtitles1. To obtain video segments, we first
extract each utterance’s starting and ending timestamps of a speaker
and then split the raw videos according to these timestamps. The
corresponding audio segments are extracted from raw videos with
the moviepy toolkit2.

2.2 Intent Taxonomy Definition
Existing intent taxonomies are restricted in specific tasks [8, 13, 26]
or from social media posts [23, 25], which are uncommon in real-
world scenes. Therefore, we design new taxonomies for multimodal
intent recognition, including two coarse-grained and twenty fine-
grained intent categories.

In artificial intelligence research, intentions are regarded as plans
or goals of an agent, accompanied by the corresponding feedback
actions [4, 51]. However, Schröder [41] pointed out that the brain’s
emotional evaluations of situations are also critical components of
human intentions.We combine these two aspects and crawl through
the raw videos to generalize two representative coarse-grained
intent taxonomies for multimodal intent recognition, including
"Express emotions or attitudes" and "Achieve goals".

The coarse-grained intent taxonomy is insufficient to distinguish
the complex and diverse types of human intentions in the real
world. Thus, we further classify it into fine-grained categories.
Firstly, we analyze different video segments as many as possible
and collect several rough intent tags as candidates for each coarse-
grained category. Then, we discuss and divide similar tags into
the same group (e.g., introducing something or someone, worrying
about someone or being interested in something). Next, we collect
high-frequency intent tags and organize them into twenty fine-
grained categories, including eleven classes for "Express emotions
or attitudes" and nine for "Achieve goals". Some intents may be cued
by a single modality such as text (e.g., thank, apologise, greet, agree,
praise), video (e.g., leave, prevent), or audio (e.g., complain, criticize).
Other intents may be inferred by combining different modalities
(e.g., comfort, care, joke, taunt, flaunt). Brief interpretations of each
intent category are summarized by observing practical examples
and referring to related materials [42], as shown in Table 2.

2.3 Multimodal Intent Annotation
After preparing data and defining intent taxonomies, we employ
five students with an English foundation for annotation. Employees
are offered interpretations and typical examples of each intent cat-
egory as guidelines. Only well-trained employees are allowed for
annotation. As intents usually exist in specific scenes of events [41],
there are irrelevant utterances among consecutive video segments,
so we add a UNK tag to the label set to distinguish them. To improve
the labeling efficiency, we build a database to manage all the multi-
modal data and a convenient platform for annotation. Users only
need to click the button of the intent tag to complete annotation
for a piece of data.

Each of the five workers is required to complete the annotation
task of the same set of data independently. They need to choose
the most confident intent tag for each sample by combining the

1https://www.opensubtitles.org/
2https://pypi.org/project/moviepy/

Figure 3: Voting statistics of 2,224 samples in MIntRec.

video, audio, and text information. The intent labels are determined
by the majority voting (three out of five). The samples with votes
larger or equal to three (not UNK) are saved. Finally, we acquired
2,224 high-quality samples to make up the MIntRec dataset.

The detailed voting statistics are shown in Figure 3. It can be
observed that intent categories with clear text or video cues (e.g.,
apologise, thank, leave, prevent, greet, agree) are easier to reach
a higher agreement with votes larger than three. We also notice
that the dataset is imbalanced. The reason is that it satisfies the dis-
tribution of different intents in real-world scenarios. Some intents
occur more frequently (e.g., complain, inform, and praise), while
others do not (e.g., joke and ask for help). Nevertheless, each intent
category still contains at least fifty samples.

2.4 Automatic Speaker Annotation
As suggested in [54, 57, 58], we first extract frames from each
video segment to represent the video information. Then, we aim to
annotate the visual contents related to the speakers, which are the
objects of multimodal intent recognition.

We perform object detection on the video frames to obtain rich
visual information containing facial and body features. Specifically,
we use a Faster R-CNN [37] with the backbone ResNet-50 [21] pre-
trained on the MS COCO dataset [29] (containing 250,000 person
instances with seventeen keypoints) to predict the bounding boxes
of persons in each frame.

However, there are still two challenges for speaker annotation.
For one thing, there may be no or little visual information about
the speaker in the extracted frame (e.g., most of the body is covered,
or the speaker only appears on the back of the body). For another
thing, there are usually multiple persons with detected bounding
boxes in each frame, making it hard to distinguish the speaker. To
solve these problems, we propose an automatic process to perform
speaker annotation with the aid of the audio-visual active speaker
detection algorithm [12, 45]. It contains the following four steps:

Firstly, we use the scene detection toolkit3 to distinguish different
visual scenes in a video segment, as there may be a change in

3https://pypi.org/project/scenedetect/

https://www.opensubtitles.org/
https://pypi.org/project/scenedetect/
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contents between adjacent frames. Secondly, a pre-trained Faster R-
CNN is used to detect the bounding boxes of persons for each frame
in a visual scene. Since facial motion (e.g., lips movement) is critical
for detecting speakers, we further use the S3FD [64] algorithm to
detect faces in the bounding boxes and establish the one-to-one
mapping between faces and object boundings. Note that this step
also filters the keyframes with clear facial features. Thirdly, a simple
and effective method is used to perform face tracking. Concretely,
we compute intersection-over-union (IoU) for two faces in adjacent
frames and consider two faces are from the same person if IoU is
above 0.5. Given that accidental objects may block faces, we tolerate
up to ten consecutive frames of missing faces. Finally, we use a
pre-trained TalkNet model with tracked faces and corresponding
audio information to predict speakers and determine respective
bounding boxes with the mapping obtained in the second step.With
the aid of this process, we automatically generate more than 120K
keyframes with speaker annotations of bounding boxes free from
any manual intervention.

To evaluate the quality of keyframes and bounding box infor-
mation, we construct a testing set with more than 12K human-
annotated keyframes. Specifically, we first uniformly extract one
shot every ten frames and manually select keyframes with clear
visual information. Then, a pre-trained Faster R-CNN is used to
predict the object boundings of persons in each keyframe, and anno-
tators label the speakers by choosing the indexes of corresponding
bounding boxes.

Compared with the human-annotated keyframes, the missing
rate of generated keyframes is only 2.3%. Among the hit keyframes,
the proportion of high-quality predicted bounding boxes (IoU >

0.9) is 90.9%. The evaluation results demonstrate the reliability
of the automatic speaker annotation process. Besides, it is much
more efficient without labor-intensive and time-consuming manual
annotations.

3 METHODOLOGY
After preparing the corresponding text, video, and audio data of
speakers, we extract features of each modality and use them for
multimodal fusion.

3.1 Feature Extraction
3.1.1 Text. Due to the excellent performance of the pre-trained
BERT language model in the Natural Language Processing (NLP)
community [24], we use it to extract text features. For each text
utterance, we obtain the token embeddings z𝑇 ∈ R𝐿𝑇 ×𝐻𝑇 from the
last hidden layer of BERT, where 𝐿𝑇 is the sequence length of text
utterances, and 𝐻𝑇 is the feature dimension 768.

3.1.2 Vision. The object detection method is used for extracting
vision features. For each video segment, we first leverage a pre-
trained Faster R-CNN with the backbone ResNet-50 to extract the
feature representations x of all keyframes. Then, we map x into the
regions with the annotated bounding boxes 𝐵 to obtain the vision
feature embeddings z𝑉 ∈ R𝐿𝑉 ×𝐻𝑉 :

z𝑉 = AvgPool(RoIAlign(x, 𝐵)), (1)

where RoIAlign [20] is used to extract the fixed size feature maps
(e.g., 7×7). AvgPool is used to reduce both weight and height sizes

Table 3: Dataset splits in MIntRec. The training, validation
and testing sets are split into 3:1:1.

Item Total Express emotions or attitudes Achieve goals

Train 1,334 749 585
Valid 445 249 196
Test 445 248 197

to the unit size. 𝐿𝑉 is the sequence length of video segments, and
𝐻𝑉 is the feature dimension 256.

3.1.3 Audio. The speech toolkit librosa [32] is first used to acquire
audio time series at 16,000 Hz. Then, the pre-trained model wav2vec
2.0 [3] is used to extract audio features, which learns powerful rep-
resentations for speech recognition with self-supervised learning.
We obtain the acoustic feature embeddings z𝐴 ∈ R𝐿𝐴×𝐻𝐴 from the
last hidden layer of wav2vec 2.0, where 𝐿𝐴 is the sequence length
of audio segments, and 𝐻𝐴 is the feature dimension 768.

3.2 Benchmark Multimodal Fusion Methods
After feature extraction, we benchmark three powerful multimodal
fusionmethods for theMIntRec dataset. These methods aim to learn
the interactions between different modalities with the extracted
features and obtain friendly representations for multimodal fusion.

3.2.1 MulT. The Multimodal Transformer (MulT) [46] is an end-to-
end method to deal with non-aligned multimodal sequences. It ex-
tends the vanilla Transformer [47] to the cross-modal Transformer
with the pairwise inter-modal attention mechanism, which helps
to capture the adaptation knowledge between different modalities
in the latent space.

3.2.2 MISA. Hazarika et al. [19] proposed the framework MISA
to learn multimodal representations with modality-invariant and
modality-specific properties. On the one hand, a shared subspace
is utilized to learn common features of all modalities. On the other
hand, distinct subspaces are designed to capture the unique at-
tributes of each modality. For this purpose, the training objectives
contain four aspects: similarity loss, difference loss, reconstruction
loss, and task-specific loss.

3.2.3 MAG-BERT. Rahman et al. [36] integrated two nonverbal
modalities into BERTwith an additional multimodal adaptation gate
(MAG) module. MAG can produce a position shift in the semantic
space adaptive to acoustic and visual information. It can be flexibly
placed between layers of BERT to receive inputs from nonverbal
modalities.

In this work, the features of each modality z𝑇 ,z𝑉 , and z𝐴 can be
directly used as the inputs of MulT and MISA. As MAG-BERT needs
aligned multimodal data, we pass the features of video and audio
(z𝑉 and z𝐴) through the Connectionist Temporal Classification
(CTC) [16] module to align with the text feature z𝑇 in the word-
level as suggested in [46]. For each method, we use the multimodal
annotations as targets and perform the classification task under the
supervision of the softmax loss.
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Table 4: Multimodal intent recognition results on the MIntRec dataset. "Twenty-class" and "Binary" denote the multi-class
and binary classification over fine-grained and coarse-grained intent taxonomies. Δ denotes the most improvement over the
text-classifier baseline in the current evaluation metric of each method.

Methods Modalities Twenty-class Binary
ACC F1 P R ACC F1 P R

Classifier Text 70.88 67.40 68.07 67.44 88.09 87.96 87.95 88.09

MAG-BERT

Text + Audio 72.16 68.28 68.88 68.88 88.83 88.71 88.67 88.85
Text + Video 72.09 67.92 69.09 68.73 88.45 88.28 88.36 88.27

Text + Audio + Video 72.65 68.64 69.08 69.28 89.24 89.10 89.10 89.13
Δ 1.77↑ 1.24↑ 1.02↑ 1.84↑ 1.15↑ 1.14↑ 1.15↑ 1.04↑

MulT

Text + Audio 71.80 67.95 69.18 67.96 88.74 88.61 88.59 88.68
Text + Video 71.98 68.76 69.68 68.79 88.79 88.66 88.63 88.77

Text + Audio + Video 72.52 69.25 70.25 69.24 89.19 89.07 89.02 89.18
Δ 1.64↑ 1.85↑ 2.18↑ 1.80↑ 1.10↑ 1.11↑ 1.07↑ 1.09↑

MISA

Text + Audio 71.60 68.37 69.57 68.30 88.45 88.31 88.32 88.35
Text + Video 71.53 68.34 69.68 68.19 88.74 88.60 88.63 88.65

Text + Audio + Video 72.29 69.32 70.85 69.24 89.21 89.06 89.12 89.06
Δ 1.41↑ 1.92↑ 2.78↑ 1.80↑ 1.12↑ 1.10↑ 1.17↑ 0.97↑

Human - 85.51 85.07 86.37 85.74 94.72 94.67 94.74 94.82
Δ 14.63↑ 17.67↑ 18.30↑ 18.30↑ 6.63↑ 6.71↑ 6.79↑ 6.73↑

4 EXPERIMENTS
This section introduces the experimental setup, baselines, and ex-
perimental results.

4.1 Experimental Setup
4.1.1 Dataset Splits. We shuffle the video segments in random and
split training, validation, and testing sets bymultimodal annotations
in 3:1:1. The detailed statistics are shown in Table 3.

4.1.2 Evaluation Metrics. Four metrics are used to evaluate the
model performance: accuracy (ACC), F1-score (F1), precision (P),
and recall (R). We report the macro score over all classes for the
last three metrics. The higher values indicate better performance
of all metrics.

4.1.3 Implementation Details. For the text and audio modalities,
we employ the pre-trained BERT model (bert-base-uncased, with
12 Transformer layers) and pre-trained wav2vec 2.0 model imple-
mented in PyTorch [50]. For the videomodality, we use a pre-trained
Faster R-CNN with ResNet-50 backbone implemented in MMDe-
tection Toolbox [10].

As sequence lengths of the segments in each modality need to
be fixed, we use zero-padding for shorter sequences. 𝐿𝑇 , 𝐿𝑉 , and
𝐿𝐴 are 30, 230, and 480, respectively. For all methods, the training
batch size is 16, and the number of training epochs is 100. We adjust
the hyper-parameters with macro F1-score. For a fair comparison,
we report the average performance over ten runs of experiments
with random seeds 0-9.

4.2 Baselines
We build a series of baselines for the MIntRec dataset. As the text
modality is predominant in the intent recognition task, we train a
classifier with the text-only modality as the primary baseline. As

suggested in [24], we use the first special token [CLS] from the
last hidden layer as the sentence representation and fine-tune the
pre-trained BERT model with the downstream classification task
for better performance.

As introduced in section 3.2, three multimodal fusion methods,
MAG-BERT, MulT, and MISA, are used to benchmark our dataset.
Besides, we also modify them to use two modalities (Text + Audio
and Text + Video) as inputs for ablation studies.

We have a different set of two annotators to evaluate the human
performance on this task. They are provided with the training
and validation sets with multimodal annotations for learning and
assessment as in baselines. After that, they need to label the unseen
testing set, and their average results are reported.

4.3 Results
We conduct experiments on the MIntRec dataset with several base-
lines and show the results in Table 4. For each multimodal fusion
method, the best results are highlighted in bold. The improvements
over the text-classifier are shown with Δ.

The multimodal fusion methods achieve substantial improve-
ments on all metrics of twenty-class and binary classification com-
pared with the text-only modality. All the multimodal fusion meth-
ods for twenty-class classification stably improve over 1% scores
on all metrics. All the baselines achieve much higher performance
on binary classification. We suggest the reason is that recognizing
coarse-grained intent categories is much easier than distinguishing
fine-grained intent categories. Nevertheless, all the multimodal fu-
sion methods still yield over 1% improvements on almost all metrics.
The results demonstrate that effectively leveraging the multimodal
information helps enhance the intent recognition capability.

However, even the best-performing methods are still far away
from humans. Compared with the text modality, the human perfor-
mance improves by 14% ∼ 19% on twenty-class classification and
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Table 5: Results of each fine-grained intent category in "Express emotions and attitudes".

Methods Complain Praise Apologise Thank Criticize Care Agree Taunt Flaunt Oppose Joke

Text-classifier 64.36 85.69 97.93 97.22 47.06 87.42 94.26 15.53 46.12 32.32 27.42

MAG-BERT 67.65 86.03 97.76 96.52 49.02 85.59 91.60 15.78 47.09 33.97 37.54
MulT 65.48 84.72 97.93 96.83 49.72 88.12 92.23 26.12 48.91 34.68 33.95
MISA 63.91 86.63 97.78 98.03 53.44 87.14 92.05 22.15 46.44 36.15 38.74
Δ 3.29↑ 0.94↑ 0.00 0.81↑ 6.38↑ 0.70↑ 2.03↓ 10.59↑ 2.79↑ 3.83↑ 11.32↑

Human 80.08 93.44 96.15 96.90 72.21 96.09 87.21 65.55 78.10 69.04 72.22
Δ 15.72↑ 7.75↑ 1.78↓ 0.32↓ 25.15↑ 8.67↑ 7.05↓ 50.02↑ 31.98↑ 36.72↑ 44.80↑

Table 6: Results of each fine-grained intent category in "Achieve goals".

Methods Inform Advise Arrange Introduce Comfort Leave Prevent Greet Ask for help

Text-classifier 67.74 67.68 64.67 68.64 77.05 73.37 82.47 84.90 66.20

MAG-BERT 71.00 69.30 63.82 67.42 76.43 75.77 85.07 91.06 64.44
MulT 70.85 69.43 65.44 71.19 76.44 75.58 81.68 86.65 69.12
MISA 70.18 69.56 67.32 67.22 78.78 77.23 83.30 82.71 67.57
Δ 3.26↑ 1.88↑ 2.65↑ 2.55↑ 1.73↑ 3.86↑ 2.60↑ 6.16↑ 2.92↑

Human 79.69 87.14 81.40 84.09 95.95 97.06 86.43 94.15 88.54
Δ 11.95↑ 19.46↑ 16.73↑ 15.45↑ 18.90↑ 23.69↑ 3.96↑ 9.25↑ 22.34↑

6% ∼ 7% on binary classification. The improvements are much
more significant than in multimodal fusion methods, indicating this
task is very challenging for multimodal research.

5 DISCUSSION
This section analyzes the effect of nonverbal modalities and shows
the performance of fine-grained intent categories with quantitative
results.

5.1 Effect of Nonverbal Modalities
We conduct ablation studies for each multimodal fusion method to
investigate the influence of the video and audio modalities. Specif-
ically, we compare the tri-modality with bi-modality and show
results in Table 4.

5.1.1 Bi-modality. After combining text with audio modality, the
intent recognition performance achieves overall gains on both
twenty-class and binary classification. Specifically, MAG-BERT,
MulT, and MISA increase accuracy scores of 1.28%, 0.92%, and 0.72%
on twenty-class and 0.74%, 0.65%, and 0.36% on binary classifica-
tion, respectively. Combining text with video modality also leads
to better performance in all settings. Similarly, MAG-BERT, MulT,
and MISA increase accuracy scores of 1.21%, 1.10%, and 0.65% on
twenty-class and 0.36%, 0.70%, and 0.65% on binary classification.

Due to the consistent improvements in leveraging video or audio
modality, we suppose the two nonverbal modalities are critical for
multimodal intent recognition. The valuable information such as
tone of voice and body movements may be helpful to recognize
human intents from new dimensions.

5.1.2 Tri-modality. Though multimodal fusion methods with bi-
modality have achieved better performance than the text modality,

we find utilizing the tri-modality brings more gains. MAG-BERT
achieves a slight advantage on the precision score but performs
worse on the other metrics. The positive results demonstrate that
both video and audio modalities benefit this task. The benchmark
multimodal fusion methods can fully use the information from
different modalities by modeling cross-modal interactions.

5.2 Performance of Fine-grained Intent Classes
To investigate the effect of the multimodal information in each
fine-grained intent category, we report the average macro F1-score
of each class over ten runs of experiments for all baselines and
show results in Table 5 and 6. The best results of multimodal fusion
methods are highlighted in bold. Δ indicates the most improvement
of multimodal fusion methods and humans over the text-classifier.

Firstly, we observe the results of each class in the coarse-grained
intent category "Express emotions and attitudes" in Table 5. It is
shown that multimodal fusion methods perform better than text-
classifier in most classes. Notably, we find there are some classes
with over 3% significant improvements (e.g., complain, criticize,
taunt, oppose, joke). The success of these intents is intuitive, as they
contain vivid nonverbal signals of expressions and tones, requiring
the aid of visual and audio information. However, we also notice that
the multimodal information is less helpful with few improvements
or even degradation in some classes (e.g., apologise, thank, praise,
agree). The reason is that these classes usually contain clear textual
cues such as sorry, thank, yeah, etc. In this case, the pre-trained
language model is good enough for intent recognition.

Secondly, we observe the results of each class in the coarse-
grained intent category "Achieve goals" in Table 6. The performance
of multimodal fusion methods consistently achieves over 1% ∼
6% improvements in all classes. It is reasonable because these
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classes are highly associated with broad body movements, such
as gestures, posture, arm behaviors, etc. By comparison, capturing
this information with the text modality is rather challenging.

Finally, we observe the human performance in Table 5 and 6.
As expected, humans have gained an absolute advantage over the
text modality in most intent categories. However, the human per-
formance is lower than text-classifier in three classes (apologise,
thank, agree). It suggests that even humans may make mistakes
in the classes biased to the text modality. In contrast, humans are
good at reasoning through different modalities and show significant
superiority with over 10% improvements in many intents, such as
taunt, flaunt, oppose, joke, etc. The huge gap indicates the necessity
of exploring an effective way to leverage nonverbal information.

6 RELATEDWORKS
6.1 Multimodal Language Datasets
Multimodal language understanding is a booming area with a se-
ries of emerging benchmark datasets. For example, many datasets
have been proposed in multimodal sentiment analysis [6, 54, 57, 58]
and emotion recognition [34]. Some multimodal datasets also de-
tect unique properties of human languages, such as sense of hu-
mor [17, 18], metaphor [60], sarcasm [7, 9]. Moreover, multimodal
datasets are designed for a series of other tasks in NLP, such as
dialogue act classification [39, 40], named entity recognition [43],
comprehension and reasoning [49, 53], comments generation [48],
fake news detection [33], etc. Nevertheless, there is a lack of multi-
modal datasets for intent analysis in real-world dialogue scenes.

6.2 Benchmark Datasets for Intent Analysis
Intent analysis is a popular research field in NLU, and many impor-
tant tasks have been proposed, such as joint intent detection and slot
filling [35, 59], open intent detection [27, 62] and discovery [28, 63].
The booming of this area benefits from several benchmark intent
datasets proposed in recent years, such as ATIS [22], Snips [13],
CLINC150 [26], HWU64 [30], and BANKING77 [8]. These datasets
collected the corpus by interacting with the intelligent assistant
or customers in specific domains and used the crowdsourcing
task among service requests to determine intent labels. StackOver-
flow [52] and StackExchange [5] gathered data from technical ques-
tion and answering platforms. Their intent labels are defined as
the tags assigned to the questions. SWBD [15] corpus contained
42 dialogue acts (DAs) for task-independent conversations. Still,
many DAs are ambiguous concepts (e.g., statement-opinion and
statement-non-opinion), which are difficult to be applied in real
applications. Intentonomy [23] analyzed the visual intents among
social media posts and collected an image dataset. However, all
these datasets merely contain information from a single modality.

MDID [25] integrated image and text information for intent
recognition. However, the multimodal information from Instagram
posts is limited, and the taxonomies are inappropriate in real-world
scenes. In contrast, MIntRec contains rich multimodal information
in dialogue scenes with text, video, and audio modalities.

6.3 Multimodal Fusion Methods
Based on the multimodal language datasets, multimodal fusion
methods are proposed to capture the interactions between language

and nonverbal modalities. Traditional methods, such as MCB [14]
and TFN [55] obtained representations by learning intra-modality
and inter-modality relations. However, the high-dimensional repre-
sentations suffer from high computational complexity. LMF [31] de-
signed low-rankmultimodal tensors to solve this problem.MFN [56]
first learned view-specific interactions for every single modality and
then used the attention mechanism to summarize cross-perspective
interactions through the multi-perspective gated memory.

Recent methods adopt Transformer-based methods for multi-
modal representation learning. For example, MulT [46] managed
to learn interactions between different modalities with directional
cross-modal attention. MISA [19] performed multimodal fusion
with multi-headed self-attention to capture the relations between
modality-invariant and modality-specific representations. MAG-
BERT [36] introduced the multimodal adaptation gate for pre-
trained Transformers to receive information from different modal-
ities. In this work, we adapt the above three algorithms to multi-
modal intent recognition as benchmark methods.

6.4 Audio-visual Active Speaker Detection
Active speaker detection (ASD) aims to detect the speaker(s) in
a visual scene. In this work, we focus on ASD with audio and vi-
sual information. Some studies [1, 12] treated this problem as a
binary classification task and used a multi-layer perceptron (MLP)
for ASD with concatenated audio and visual features. Besides, tem-
poral structures [38, 44] such as recurrent neural networks (RNNs)
were adopted to obtain better performance with time-series in-
formation. MAAS [2] introduced graph convolutional networks
(GCNs) to model interactions between audio and video modalities.
TalkNet [45] introduced an audio-visual cross-attention mecha-
nism for effectively modeling cross-modal interactions and a self-
attention mechanism for capturing long-term speech dependencies.
In this work, we use TalkNet for automatic speaker annotation.

7 CONCLUSIONS
This paper first presents a new dataset for multimodal intent recog-
nition. It has 2,224 high-quality annotated samples with correspond-
ing multimodal information. New taxonomies with coarse-grained
and fine-grained intent categories are specifically designed for real-
world multimodal scenes. We also propose an automatic process
to obtain the information of object boundings towards speakers,
which vastly reduces the annotation burden. We make great efforts
to ensure the quality of our dataset and build baselines with three
multimodal fusion methods. Comprehensive experiments verify
the superiority of multimodal information for intent recognition.
The gap between the best-performing multimodal fusion methods
and humans indicates there is still a long way to go for multimodal
intent recognition.
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